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A scattering configuration consists of a primary acoustic source Sand a scattering 
body B, and we examine the effect of Convection of 8 and B, at a uniform sub- 
sonic Mach number M ,  on the scattered field, for various types of source and 
scatterer. It is shown that if B is a compact rigid body scattering the near field 
of the source S it is not equivalent to a convected point dipole, but rather its 
pressure field is augmented by the quadrupole convection factor (1 - M cos 19)-~. 
If, on the other hand, the compact body B scatters the distant field of S, convec- 
tive effects introduce an O(M)  monopole field which does not vanish in the side- 
line directions. A number of problems are examined in which B is a rigid half- 
plane, and there it is shown that the effect of convection is to augment the 
pressure by (1  - M cos e)-$ in the case of diffraction of the field of a distant source 
S, and by (1 - M cos I9)+ for scattering of the near field of S. Effects associated 
with the multipole order of S are discussed, as are those arising from the satis- 
faction of a Kutta condition at the trailing edge of the half-plane, and the appli- 
cation of these results to current problems in aerodynamic sound is mentioned. 

1. Introduction 
Much of the current effort, both theoretical and experimental, in aerodynamic 

noise is directed towards the study of mechanisms generating so-called ‘excess 
noise’; i.e. measured engine noise levels in excess of those associated with the 
turbulent exhaust mixing process alone. Interest in these mechanisms is heigh- 
tened by the fact that their fields change in a manner quite different from mixing 
noise under forward flight conditions. As a sweeping generalization one might 
say that mixing noise dominates most of the downstream arc, and there tends 
to  be alleviated by forward flight, while excess noise dominates the side-line 
and forward-arc fields, and there tends either to remain more or less independent 
of flight speed or to increase in flight. A simple view consistent with this is that 
mixing noise is correlated with the shear across the mixing layer, and the shear 
drops in forward flight, while the excess noise is generated by sources within 
the engine, and if the sources are in some sense attached to the engine their 
fields will suffer Doppler amplification in the upstream arc in flight. In  order to 
predict the noise of a given engine in flight one would therefore need to know (i) 
the levels and spectral distribution of mixing noise and excess noise under static 
conditions; (ii) the dynamic effects of flight on the strengths of the sources of 
mixing and excess noise; (iii) the acoustic effects due to convection of the sources 
attached to the engine. A great deal of work is at present being directed towards 
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item (i), although this presents possible fundamental difficulties, in that an excess 
noise field might be undetectably weak statically and yet be so highly amplified 
by convection as to dominate the total flight noise field over some range of 
angles. Topic (ii) needs much further attention than it has so far received, 
though one might generally assume that the dynamic effects of flight are likely 
to be either beneficial (on mixing noise, for example) or negligible (on sources 
deep within an engine). Topic (iii) has also not received much attention in the 
past, and yet seems to offer possibilities for simple theoretical models which 
would at  least indicate the nature and rough magnitude of effects to be expected. 
This paper aims to make a start in that direction by studying convection effects 
on one type of mechanism which is a potential source of excess noise: the scat- 
tering of intense near-field pressures by solid surfaces. 

The results should have other aeronautical applications beyond the issue of 
excess engine noise. For example, the use of blown flaps as high-lift devices 
seems likely to set severe noise problems because of the sources associated with 
exhaust impingement on the flaps, and as the flap noise source is attached to the 
aircraft, one must anticipate a substantial increase in radiated flap noise ahead 
of the aircraft in flight. As another example, the use of aerodynamic surfaces 
as engine noise shields is likely to feature prominently in future designs, and it is 
necessary to know how the field in the shadow of a wing is changed by flight and 
how the interaction field between a wing trailing edge and an overwing shielded 
engine exhaust changes with flight conditions. If the noise sources can be ade- 
quately modelled, the results of this paper should be capable of predicting 
these changes, at  least as far as the purely acoustic effects of flight are concerned. 

Papers have, of course, been published previously on related theoretical 
lines. In particular, Cooke (1970)) Jones (1972) and Candel (1972) have looked 
at  variant,s of the half-plane problems with convection discussed in $5, though 
without the motivation we have here, while Ffowcs Williams & Hawkings (1969) 
have given a general formulation of the problem of sound generation by unsteady 
flow and surfaces in arbitrary convective motion. Their results, however, are 
completely formal, and consist essentially of integral restatements of the 
governing differential equation and boundary conditions, rather than explicit 
solutions of those equations for particular geometries. Consequently, one can- 
not be sure that the effects of convection are unambiguously revealed in such 
formal statements, and indeed we shall see ( 5  4) that in some cases the formal 
solutions are misleading, while they are unable to offer any general prediction 
for the kind of problem discussed in 5 5. 

We therefore examine below the details of some simple problems in which a 
source and a scattering body are convected along together at  a subsonic Mach 
number M .  For practical purposes we are often interested only in H 2  < 1, and 
the neglect of M 2  compared with unity offers a useful analytical simplification, 
while permitting purely acoustic convection effects which already show them- 
selves at O ( M )  to be distinguished from such O(M2) dynamical effects as the 
dependence of sound speed on convection velocity. We shall therefore always 
neglect M2 compared with unity. 

We start by giving some kinematic relations, and then recall the results for 
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convected point multipoles in $ 3. We then find, in $4, that a compact rigid scat- 
tering body in motion is not equivalent to a convected point dipole, as one would 
naturally assume, but rather, suffers convective amplification of quadrupole 
order in the case of near-field scattering. When the compact body scatters the 
field of a distant source, convective effects cannot be represented entirely in 
terms of powers of the Doppler factor, as these effects turn out to introduce an 
O ( M )  monopole field which, of course, survives in the side-line directions. This 
contradicts a widely held feeling among workers in aerodynamic noise, to the 
effect that convective effects must vanish in the side-line directions. 

Next we examine the prototype non-compact inhomogeneous surface, the 
rigid half-plane, and find the effects of convection on the fields diffracted or 
scattered by the interaction of a source with the edge. Apart from the issue of 
trailing-edge Kutta conditions, dealt with by Jones (1972) and reproduced 
briefly in $5, it is found that convective effects here are always represented by 
Doppler factors of non-multipole order, lending support to the idea that edge 
scattering mechanisms can be regarded as some kind of fractional multipole. 
In  the final section we summarize these results, give the orders of magnitude 
of the effects predicted in practical terms, and indicate problems on which 
further work is needed. 

(An earlier version of this paper contained also a discussion of sound generation, 
rather than scattering, by moving bodies. Some of the results given there were 
erroneous, and as the generation aspect of the problem has in any case now been 
comprehensively treated in a forthcoming paper by Dowling (1975), the present 
paper accordingly restricts itself to scattering and diffraction problems.) 

2. Kinematic relations 
We are concerned with the kind of configuration shown in figure I. A source 

S and a scattering body B are convected together in the x direction a t  a constant 
speed U = a,M, a, being the sound speed. S emits a signal a t  time ts, which is 
scattered by B at time t, and received by an observer a t  P a t  the current time t .  
We wish to compare this signal (characterized by the potential 9 or pressure p )  
with that which would have been received a t  P in the static problem in which 
B has its position a t  time t, and S its position at time ts. In  other words, the 
comparison is to be made a t  given values of ( r ,  0) and (R,, @,). If the distance 
ro is much less than a typical wavelength, it is equally relevant to make the 
flight: static comparison a t  given values of ( r ,  8) and (r,, O,,), as in this case the 
idea of a wave taking a well-defined time t o  get from S to B does not hold (though 
we are in no way suggesting that the results of the comparison will be the same 
at  a given value of (r,, 0,) as at  a given value of (R,, 0,)). 

As explained in $ 1, we limit ourselves to the case in which J12 may be neglected 
compared with unity. Then the following relations hold: 

i; = r(I--Mcos0), (2-1) 

14-2 
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FIGURE 1. Configuration consisting of a primary source S and a scattering body B, con- 
vected together along the x axis. The diagram shows the position of a static observer P 
in relation to the positions of S and B at the time ts of emission o f  a signal from S, at 
the time tB of the scattering of that signal by B, and at  the time t of reception of that 
signal at P.  The signal heard at P is to be compared with that heard at P in the static 
problem in which S is located at S(ts) and B at B(~B) .  

P o  = R,( 1 -I- M COB a0), (2.3) 

COB 0, + M sin 0, case - sine, = 
O -  1+Mcos0,’ 1 + M cos 0,’ 

with an obvious difference in the sign of M between the two sets of relations. 
The co-ordinate T is a function of x, y, z and t ,  

r2 = [x - U(t  - tB) + NrI2 + y2 + z2, (2.5) 

and has the derivatives 

(2.6) 
( ~ ) , = l - M c o s B ’  Pl ( ~ ) , = l - M c o s B ’  P 3  

and + = -aoMcos8/(1-Mcos8),  (2.7) 

B(tI3). 
(pl, ,& p3) being the direction cosines of the observer from the emission point 

For harmonic time dependence of the source, we shall find the distant field 
scattered by B to contain the phase factor expik(r-a,t), where P vanes with t 
according to (2.5). If P is a t  rest reIative to the fluid, the signal received is then 
not harmonic, and we can only deJine the observed frequency to be minus the 
time derivative of the phase. Thus 

d 0 0  
W(T ,  8)  = - - k(r - aot) = 

at 1 - M cose’ 

where oo = aok is the static frequency. This is a general expression of the fre- 
quency shift known as the Doppler shift. 
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3. Sound generation by convected point multipoles 
We now recall some well-established results for the fields radiated by con- 

vected point multipoles (see, for example, Morse & Ingard 1968, chap. 11). It 
will be shown in $ 4  that none of these results is identical with any of those for 
the fields scattered by small convected solid bodies. 

An acoustic source is usually called a convected point monopole of strength 
Q(t)  if the pressure it generates satisfies the equation 

the source being convected at speed U along the +x axis and, for the moment, 
replacing the scattering body B. The corresponding potential satisfies the 
equation 

(3.2) 
i a 2  1 (-3 -@) 9 = p Q ( W -  W&/)W, 

p denoting the mean fluid density. The free-field solution for the potential is 

so that, using a prime to indicate differentiation with respect to the argument, 
the far-field pressure is, to O(+), given by 

in view of (2.7). Note that, as in figure 1, the co-ordinates r and 0 are time de- 
pendent, being measured from the source point a t  the time of emission. 

A source is called a convected dipole of strength F(t )  if it radiates a pressure 
field satisfying 

(3.5) 

The solution can be found by taking spatial derivatives of (3.2) and (3.3) and 
using the relations (2.6). This yields 

( V2 - $ g) p = div {F( t )  6(x - U t )  6(y) 6(x)}. 

so that, to O(r--l), 

Thus monopoles and dipoles concentrated a t  a point suffer the same effect 
under convection; for each, the potential acquires a factor (1 - M cos 8)-1 
relative to its static value, while the pressure is increased by the factor 
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Why the effect of convection should be the same on a monopole as on a dipole 
is made more apparent if we write the monopole field (3.4) in the form 

Q'(t - r/ao) + cos t9 UQ'(t - r/ao) 
= 4 4  1 - &f cos 6) 47ra0r( 1 - cos 6)2' 

The f i s t  term represents the field of a convected 'simple source', generating 
mass but not momentum, with 

while the second term represents the field from a convected point dipole, whose 
strength UQ(t) is the rate at which the convected monopole injects momentum 
into the field. It is this dipole contribution which leads to the appearance of 
(1  - Mc0st9)-~ in the pressure fields of both convected point monopoles and 
dipoles. In  contrast, the fields of a convected 'simple source' contain one less 
Doppler factor, the results for (3.9) being 

The results for multipoles of higher order are obvious. A point quadrnpole 
T(t), for example, is associated with an equation 

and with fields 

(3.12) 

(3.13) 

(3.14) 

4. Scattering by convected compact bodies 
4.1, Near-field scattering 

Here we examine the extent to which the results of 8 3 are relevant to the fields 
scattered by convected bodies of small but finite dimensions compared with the 
typical wavelength. For definiteness we consider a rigid sphere B of radius a, 
convected along at  a Mach number M together with a source S, which we take 
to be an idealized monopole of strength &(t) = Qexp (-ika,t). Using $ for the 
azimuthal angle about the convection axis we have E = ('i;cos8,'i;sin8cos$, 
V sin 8 sin $) and ro = (ro cos 6,, r, sin 6, cos @o, rosin 6 sin $,), and we write 3 
for the angle between Z. and r,, so that 

cos 9 = cos S cos Bo + sin 8 sin Bo cos ($ - $,). 

We are concerned here with near-field scattering by a compact sphere, so that 
ka+O with ro/a = 0(1), and we calculate the scattered sound field using the 
simple, physically reasonable, kind of matching argument used, for example, by 
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Landau & Lifshitz (1959, p. 281). A convected wave field is found whose inner 
behaviour near the sphere agrees with the leading term of the outer behaviour 
of an incompressible flow around the body. After deriving the result we shall 
justify this procedure, as a strictly comparable argument for the far-field 
scattering discussed in $4.2 gives an incorrect result, even in the static case 
M = 0 - a problem which Landau & Lifshitz discuss using another method 
without mentioning the failure of the simple matching argument. The truth in 
fact is that the 'asymptotic matching principle 'which should be used to relate the 
scattered wave field to the Laplace flow around the body is only a mathematical 
principle, and though the physical origin for it may seem plausible, that physical 
argument is not only unnecessary but may be misleading (see Crighton & 
Leppington 1973, appendix B). It will be seen in $4.2 that a more careful formal 
approach than that of Landau & Lifshitz is necessary to get the right results, 
even for such a simple problem as (effectively) that of plane-wave scattering by 
a static compact sphere. 

In the case of near-field scattering, the motion is incompressible for 7cF < 1, 
and the incident potential due to S behaves like - (Q/4np) (E - ro1-l exp ( - ilca,t). 
The harmonic function @ which vanishes at infinity and which, when added to 
this incident field, has zero normal derivative on the sphere is 

Q exp ( - ika, t )  qp=- 

x Pg) (cosg) Pg)(cos 0,) cos s($ - $,), (4.1) 

where es is the Neumann symbol. For F/a $ 1 this reduces to 

I a3 pN-- Q exp(-ika,t)--cosS, 
477P 2 

and this is to be matched to the inner limit of a solution of the convected wave 
equation (which holds, to leading order, throughout the region 3 4 a) .  A solution 
with the required form is 

provided that the inner limit 

agrees with (4.2), thus requiring 

(A,B,C) =-- Q a3 (cos B,, sin B, cos +o, sin 8, sin +,I. 
477p 2rE 

(4.3) 

(4.5) 

Use of (4.5) in (4.3) then gives the far-field pressure scattered from B, referred 
to  the r frame defined by the scatterer at its emission time, in the form 

cos9 expik(r-a,t) 
(1 - M cos B)3 r 9 

where 8 is the angle between r and r,. 
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Apart from the factor (1 - M cos 0)-3, this expression is precisely the formula 
for the near-field scattering from a compact rigid sphere under static conditions 
(see, for example, Crighton & Leppington 1971, equation (2.9)), and thus we 
see that the static dipole field is in this case augmented by the quudmpole 
convection factor (1 - M cos 0)-3. This conclusion seems at variance with simple 
intuition, as exercised, for example, by Lowson (1965)’ who assumed the equiva- 
lence of small bodies and convected dipoles in an analysis of propellor noise, 
and by Ffowcs Williams & Hawkings (1969), who derived a formula which 
seemed to confirm Lowson’s supposition. There is, however, no discrepancy, for, 
as shown by Dowling (1975), the Ffowcs Williams & Hawkings results do not 
completely expose convective effects in the way one might hope. The origin 
of the ‘extra’ Doppler factor can be seen from the fact that the enforcing of a 
boundary condition on the potential g5 (which in the convective case is not simply 
proportional to p )  leads naturally through (4.2) to the form (4.3), in which it is 
already clear that the scatterer is a dipole of potential, and therefore that the 
potential will be convectively amplified by (1 - M cos r3)-2, the pressure by 

It is evident that this result is quite independent of the nature of the source S, 
provided only that all sources involved fulfil the condition kr,, Q 1. For when 
kro Q 1 and ka < 1 the convection cannot change the potential incident on the 
sphere. It cannot change the amplitude of the incident potential, since we have 
neglected those changes in taking M 2  4 1, neither can it change the phase, for 
the phase changes over the whole scattering region are negligible. The only 
effect can be that of convection on the sound as it leaves the scattering region, 
and the magnitude of that effect is determined, regardless of the excitation from 
8, by the multipole order of the scatterer, and a compact rigid body scatters a 
dipole field of potential regardless of its shape. Thus the (1 - M cos 0)-3 factor of 
(4.6) applies quite generally to the scattering by any rigid compact three- 
dimensional body. In  a, purely two-dimensional situation, the corresponding 
factor is obviously (1 - M cos O)-%. 

One might expect these results to hold whatever the value of kro, for the inner 
scattered potential will always have a dipole form like (4.2) as i;/a+co and so 
will always ‘match’ (in the Landau & Lifshitz sense) an outer dipole field like 
(4.3). That, however, is an incorrect conclusion, for even in the static case the 
dipole field scattered from a nearby source (kr, g 1) gives way as kro increases 
to a field in which there are comparable monopole and dipole elements, as will 
be seen in $4.2. The error lies in the matching scheme. One can in fact add to 
(4.3) an arbitrary monopole DP-l exp ik(F + ME - a,t) and the outer field will 
still ‘match’ (4.2) in the sense of the asymptotic matching principle (as proved 
in various forms by Fraenkel 1969; Crighton & Leppington 1973). The mono- 
pole strength D can only be found from a higher-order matching involving the 
next inner approximation (cf. a comparable step in Crow’s (1970) treatment of 
aerodynamic sound generation by matched expansions). 

In  $4.2 we carry out the higher-order matching for the case kro+co in which 
D does not vanish. In  the present case it is found that D = 0, and the reason 
why this might be expected comes from consideration of Howe’s (1975) reverse- 

(1 - M cos 0)-3. 
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flow theorem. This generalization of the usual reciprocal theorem allows the 
nearby source and distant observer to be interchanged subject to reversal of the 
mean flow, and then one solves for the near field scattered from an incident 
plane convected wave (cf. Crighton & Leppington 1971; Howe 1975). In  this 
reciprocal problem the near field is clearly dominated by a dipole, so that in the 
original problem the far field must be dipole, and hence D = 0. 

4.2. Scattering of theJield of a distant source 

As yo+ co, the potential incident on the sphere from the source S takes the 
plane-wave form 

times an overall multiplicative factor 

# N exp { - ik7 cos 9 + ikMF cos '8) 

- (&/4~pr,) exp {ikr,( 1 - M cos 0,) - ika,t). 

(4.7) 

We seek an asymptotic approximation, as ka+ 0, to the scattered potential p 
which satisfies the exact equation 

for inviscid irrotational homentropic flow, and which makes 

a(@+p)/87 = 0 on ? = a .  (4.9) 

The details of the solution to this problem, using a careful application of matched 
expansions, are given in the appendix, where, for simplicity, we consider only 
the axisymmetric case with sin0, = 0. Equations (A 11) and (A 12) lead to the 
result for the scattered pressure 

a exp {ikr + ikr,( 1 - M cos 0,) - ika,t) 
(1 - M  cos 0)s 

Ps= -zo iQ (ku,) (ka)2, 

1. (4.10) 
1 (cos 8, - 2 ~ )  cos e 

x [ --Q(cos 8, - M)2 + $M (cos 0, - M )  -- 
2 l-Mcos0 

When M = 0 the directivity factor - 4 - 8 cos 0 sgn (COB 0,) agrees with 
established results (see, for example, Bowman, Senior & Uslenghi 1969, p. 376). 
Convective effects change the strength of the monopole by O ( M )  and augment 
the monopole pressure by (1  - M COB i9)-2, while the dipole strength is also 
changed by O(M)  and the pressure of the dipole field augmented by (1 - M cos 0)-3. 
Again the quadrupole factor (1 - M cos @-3 gives the amplification of a dipole 
field, but in this case the coupling between monopoles and dipoles precludes a 
convective effect expressible purely in terms of powers of the Doppler factor. 
A most important point to notice about (4.10) is that the field is changed by 
O ( M )  even at 90" to the convection direction, even in the axisymmetric case 
cos0, = f. 1. This contradicts a widely held (though of course unproven) idea 
among workers in aerodynamic noise: that, if one concentrates on the side-line 
direction, convection and velocity refraction effects are absent and one gets a 
true view of the source. 
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The comparison with the static field should really be made after the use of 
(2.3) and (2.4) to introduce the co-ordinates (I?,, 0,) in place of (r,, 6,), yielding 

- iQk2a3a, exp {ikr + ikR, - ika,t) ps = 
4n R,( I + M cos 0,) r( 1 - Mcos 0) 

1 cos2 0, cos 0, 
(1+2Mcos@,)(l-Mcos0) x(-- + QM 3 (1 + M cos 0,J2 (1 - M cos 0) 

(4.11) 

This shows a rather complicated convective effect as far as the source Doppler 
factors are concerned. The differences between the powers of I + 1M cos 0, 
that appear in the final bracket are subtle; (1 + M cos @,)-l appears in the final 
term because this dipole term is thrown up by the first-order inner solution, 
which in turn is generated by the linear term in ‘i; of the factor (4.7). The first 
term, the O( 1) monopole, is determined only by the second-order inner solution, 
and part of that depends upon the r2 term in the expansion of (4.7), hence involv- 
ing a coefficient (cos 6, - &Q2 = cos2 a,( 1 + M cos The O ( M )  middle term 
in the last factor in (4.11) also comes from the second inner solution, but this 
time from a particular integral involving the first-order solution linearly, and 
hence involving only the factor cos 6, - M = cos 0,( 1 + M cos 0,)-l. Such subtle- 
ties could hardly be anticipated, and therefore it is necessary to carry out 
calculations of this kind in some detail to see the variety of effects which may 
arise. Further complications presumably arise in the ‘off-axis’ case sin@, + 0, 
and no general conclusion can be drawn as to the dependence of the scattered 
field on the location of S. The multipole nature of S sets no problem, however. 
One merely multiplies (4.11) by whatever factor multiplies the new incident 
field from S (that factor being cos@,(l+McosOo)-l for an axial dipole, for 
example). 

1 1 cos o, COB e 
2 (I  +McOSOO) (1 - Mcos8) * 

-- 

5. Half-plane diffraction problems 
In this section we discuss scattering and diffraction by non-compact inhomo- 

geneous bodies. The simplest case, and certainly the simplest for generalization 
to include convective effects, involves the rigid semi-infinite plate, convected in 
its own plane, As in $4, we look at  the case of a multipole source S convected 
along with the plate, both when kr, < 1 and kr, 9 1. Further, the plate edge 
may be either a leading edge or a trailing edge. The latter opens up the possi- 
bility that we should enforce a Kutta condition on the unsteady trailing-edge 
flow by allowing vorticity to be shed from the plate. 

Leaving that particular issue aside for the moment, we can see immediately 
what kind of results must emerge. Take the case of a source close to the plate 
edge, and consider the diffraction problem for the convected wave equation 
which arises in the Z frame attached to the plate. This problem can be reduced 
to the same static problem by a simple phase shift (which amounts to making a 
Lorentz transformation of the original problem involving still fluid and moving 
boundaries). Now the static problem is well known to have a solution incapable 
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of any compact multipole interpretation (Crighton & Leppington 1971): in fact 
the potential is proportional to a fractional power of the wavenumber k, while 
the directivity is of the cos@ variety. It is obvious then that when the trans- 
formation (2.1)-(2.2) is applied to this solution, Doppler factors raised to 
powers different from those associated with multipoles must appear. For 
example, the scattering of the field of a point monopole by the half-plane will 
be seen to involve factors like (1 - M cos 8)-* and (1 - M cos 8)-%. 

Thus, even leaving aside the question of effects due to the type and location 
of the source S, we see again that convective effects on the directivity of surface- 
scattered sound fields are not universal. For any compact rigid surface B scat- 
tering the near field of S convective effects on the pressure directivity are always 
accounted for by the (1 - M cos €J)-s factor, regardless of the shape of the scat- 
terer and the location and type of source S, as proved in $4. Inasmuch as any 
rigid scatterer is acoustically equivalent to a surface dipole distribution, one 
might expect the (1 - M cos 8)-3 factor to apply also to non-compact surfaces, 
though that is now seen to be an erroneous idea. In the case of a static half-plane, 
the elementary surface dipole contributions are so phased by the appropriate 
retarded times as to lead to a net scattered field not of multipole type. When the 
half-plane is convected the strengths of the surface dipole potentials are indeed 
unchanged in amplitude (if 1M2 < l), but their integrated effect is changed 
nonetheless because convection alters the retarded times at  which the individual 
dipoles must emit, and there is no reason to expect this change to take a multipole 
form. 

We indicate below the way in which results can be found for one particular 
configuration, and merely state the results for other cases. The direction of 
motion is again the +x direction, and we consider the trailing-edge problem 
with the half-plane in 0 = 0, Z > 0. (Note that, in every case, the angles 8,8, 8, 
and 0, are measured from the direction of motion, and so not necessarily from 
the half-plane.) 

The half-plane is rigid, and is irradiated by a line monopole, so that the 
potential 9 is independent of z and satisfies a convected Helmholtz equation 

(5.1) 

a+/lay= o ( y =  0, z > 01,  (5.2) 

[V- (MqaE + ik)2] Q = S(Z - xo) 8(0 - yo), 

with the factor (&/p) exp ( - ikaot) suppressed. The boundary condition on the 
plate is that 

while aq$/aij and the pressure p = -p(a/at -Ma,a/aE) q$ must be continuous 
across = 0 , E  < 0. This does not necessarily entail the continuity of q5 there 
(Jones 1972), though it does require that the jump in $ be constant in a frame 
moving with the mean flow, i.e., 

q $ ( i i ? , O + ) - - $ ( Z , O - )  = Aexp(-ikE/M), (5.3) 

where A is arbitrary. Thus the unsteady tangential velocity may be discontinuous 
across the downstream extension of the plate, and the constant A ,  a measure of 
the strength of the oscillatory vortex sheet shed from the plate, may, if we 
please, be chosen to ensure satisfaction of a Kutta condition at the trailing edge. 
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TO solve (5.1), write 

q5 = exp [ ikM(z  - x,)] u, + exp ( ikMx)  u,, 

1 where (V2 + k2) u, = 6( x - x,) 6( ij - go), 
auo/ag = 0 (g = 0,3  > O ) ,  

u,(x,0+)-u0(3,0-) = 0 (X < 0)  

(V + k2) u, = 0, and 

au,/aq = 0 (ij = 0, x > O ) ,  
u~(X,O+)-UA(X,O-) = Aexp(-iEx/M) (5 < O ) .  

We have again neglected M 2  compared with unity, though as Jones (1972), 
Candel(l972) and Cooke (1970) have shown, it is unnecessary to do this in these 
half-plane problems. There is not really any point in retaining M 2  here, however, 
as we were unable to retain it in 0 4, and as our aim in any case is to study purely 
acoustic effects due to convection. These are already present at O(M),  and it is 
useful to distinguish them from dynamical effects of compressibility, which do 
not occur until O(M2) .  

The problem for u, is just the classical static half-plane problem, while the 
eigensolution ZLA can of course exist only if A + 0. Calculation of u, is a familiar 
matter (see, for example, Jones 1964, pp. 581-590; Bowman et al. 1969, chap. 8). 
For ki' < 1 and general values of kr, we find 

zc, N - n-l(~/r,)+ exp (ikr,) cos $8 cos BOO, (5.7) 

while the distant fields are given by 

[ -n- l (r0/r) texpikrcosB8cos~8,  (kr & I, kr, < I), ( 5 4  
i exp i (k r  + kr, - in) cos $8 cos $8, 

( k T B  1, k r o B  I), (5.9) 
k(?r,)3 eos 8 + cos 8, 

provided, in the latter case, that 8 is not near to f (n-O,), the geometrical- 
optics boundaries. Calculation of U, by Wiener-Hopf arguments is straight- 
forward (Jones 1972), and leads to 

U , - - A ( ~ )  I S M  * exp(-:)(') kr * cos- 8 
2 

a t  points so close to the edge that k? < M ,  while for hi; 9 3 

(5.10) 

(5.11) 

The choice A = 0 excludes the possibility of vortex shedding from the plate. 
According to (5.77, the velocities at  the edge will then have the mild r-* singu- 
larities characteristic of edge diffraction fields in the absence of flow, and we 
say that in this case no Kutta condition prevails on the unsteady trailing-edge 
flow. In  this case (but not, however, in the static half-plane problem) there are 
also F-4 singularities in the pressure and in the pressure jump across the plate, 
though these singularities are really so innocuous that they do not preclude the 
solution as physically unrealistic. In particular, the choice A = 0 must apply 
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to all leading-edge problems, and must be expected t o  apply also at the trailing 
edge at sufficiently high frequencies. Just how high those frequencies must be 
is at present an entirely speculative issue, into which we shall not enter here. 

In our trailing-edge problem the choice A = 0 leads to a distant-field potential 

(5.12) 

for the case kr, < 1. The potential is increased over its value in the static prob- 
lem at the same values of r and ro by the factor (1 - M ) &  (1 - Mcos 0)-1 and the 
pressure is increased by (1 - M)* (1  - M cos 0)-2. Contrast this with the convec- 
tive amplification factors (1 - M cos O)++&), for integer values of n, which apply 
to the fields of two-dimensional line multipoles, n = 1 corresponding to a mono- 
pole or dipole, n = 2 to a quadrupole, as far as amplification of the pressure is 
concerned. The Doppler factor and the directivity function appearing in (5.12) 
suggest an interpretation of near-field scattering by a half-plane as a fractional- 
order multipole, a Q-pole, an interesting analogy which will be pursued in a 
later paper. 

It is possible to eliminate the factor (i-M)*, and make the result (5.12) 
rather neater, by makmg the comparison with the static problem at the same 
values of (Ro, Oo), instead of (r,, 0,). There is, however, no real reason for doing 
this when kr, 4 1, as the edge of the plate is no more the scattering centre than 
any other point less than a wavelength from the edge. The result, for the record, is 

(5.13) 

and is free of M dependence, except in the Doppler factor. 

(R,, Oo), and then the distant field, with A = 0, is found to be 

1 exp i(kr + kR, - $7~) cos #0 cos to, 

When kr, 9 1 it is essential to make the transformation from (r,, 6,) to  

(5.14) 

This shows that the diffracted potential of a line monopole many wavelengths 
from the diffracting edge is entirely unchanged, up to O(M) ,  by convection. The 
pressure is, however, amplified by the factor (1 - M cos 0)-1, relative to its value 
in the static case. 

Analogous results can be found for the leading-edge problem in which the 
plate (3 = 0,5 < 0) moves in the +x direction (8 = 0). For that problem only 
the choice A = 0 is relevant. Table 1 gives a summary of results for that case, 
and for the trailing-edge problem with A + 0, to which we now turn. 

If vortex shedding from the plate is allowed, then any value of A except one 
gives a solution with mild velocity and pressure singularities at  the edge. There 
is a unique value of A (Jones 1972), 

$0 -2n k(rR,)+ cos e + cos o, * 

(5.15) 
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which yields finite, and in fact vanishing, values of the acoustic pressure and 
velocity at the trailing edge. The field #A which must be added to 4, to ensure 
satisfaction of a Kutta condition in this way has the far-field form 

cos !! c o s ~ M (  1 - M cos a,), (5.16) exp i(kr + kR, + in) 
9a - 2nk(rR0)3 2 2  

which, however, is dominated by 9, for most values of kr,, as consideration of 
(5.13) and (5.14) will show. Only when the source S lies within a ‘hydrodynamic 
wavelength’ U / o  of the edge does the eigensolution #A dominate. Then kr, 4 $1, 
and the satisfaction of the Kutta condition causes an increase in the radiated 
potential by a factor of order Mlkr,. Whether or not the Kutta condition is 
satisfied, however, the field always has the cos 40 directivity when kr, 

These results can be extended to cover the effects of convection on the fields 
scattered or diffracted by the half-plane when the source S is a point monopole. 
Let (7, 8, X) be cylindrical co-ordinates in the convected Z frame and (r,, 8,, 2,) 

the fixed source co-ordinates in that frame. Then, leaving aside the question of 
Kutta conditions altogether, the potential satisfies 

1. 

[V2-(Ma/aZ+ik)2]  9 = ~ ( Z - X , ) S ( ~ - ~ , ) ~ ( Z - Z ~ )  

and, with the aid of results for the static problem (Bowman et al. 1969, chap, 8), 
can be written as 

4 exp i(lcR, + kM( 5 - x,) + in) cos $9 cos 
(5.17) 

where 22: = (F+rO)2-t  ( X - X , ) ~ .  This result holds for k7 9 1 and kr, 3 1, and 
takes on a simple form only in the ‘flyover plane’ X = x,, to use an obvious 
expression. There, in the very distant field ? & yo, we have 

Jz exp i (kr  + kR, + in) cos $6 cos @, 
Q N (m) (kr)(i-Mcose)* cose+coso,- 

(5.18) 

Apart from a numerical factor, (5.18) is identical with the result (5.14) for a line 
source, except for the additional factor (kr)* (1 -ill cos 0)i arising from spherical, 
rather than cylindrical, spreading. Thus when kr, > 1, the diffracted field from a 
point monopole is increased by (1  - M cos 0)-4 as far as the potential is con- 
cerned, while the pressure is amplified by (I  -iMcos8)-8. If kr, < 1 then the 
distant scattered field is 

(A) k(8r0)4 cos s + 00s e, 9 

k 

(5.19) 

in the flyover plane X = zo, and obviously here the potential will be increased 
over its static value by (1 - N cos @-a, the pressure by (1 - M cos O)-g. 

All these results can be generalized to permit the source S to be a multipole 
of arbitrary order, though, just as in $ 4 ,  this aspect affects only the source 
Doppler factors 1 + M cos 0, and not the dependence upon 0. For rigid half- 
planes the 0 dependence is a characteristic only of whether the body is acting 
in a near-field scattering mode (kr, < I) or a far-field diffracting mode (kr, 3 1). 
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Configuration 

Trailing edge 
Kutta condition 
kro Q I I f  

Trailing edge 
No Kutta condition 

kro Q 1 

Trailing edge 
Kutta condition or 
no Kutta condition 
k5-0 s 1 

Leading edge 
No Kutta condition 

kgo 4 .1 

Leading edge 
No Kutta condition 

kro 9 1 

!J!WO 

dimensions 

M ( l - M ) 3  
27rkr, I 

M(1 - M  cos 0,) 
27rkR0 

( l - M ) i  
i-iwcose 

l,i - M' cos e 

1 

1 

Three 
dimensions 

M(l-M)8 

27rkro( 1 - M cos e)t 

27rkR0( 1 - 31 cos O)* 

( l -Mcose)+ 

M(l--1II cos 00) 

(1-M)i 

1 

(1 - M cos 0)3 

(1 + M)* 

TABLE 1. Ratio of potentials in convected and static cases for half-plane problems. The 
ratio of the pressures is obtained by multiplying each entry by (1 - M cos $)-l. I n  each 
case, the primary excitation is due to a point monopole in three dimensions and to a 
line monopole in two dimensions. For the first two rows of entries the reference static 
potential is, of course, one on which no Kutta condition can be imposed. 

Thus for purely two-dimensional problems the pressure field scattered (kr, < 1) 
by a rigid half-plane is increased by (1 - M cos t9)-2, while the diffracted (kr, % 1) 
pressure field is increased by (1 - M cos O)-l. Of course, these Doppler factors 
represent weaker effects due to convection than the Doppler factor (1 - M cos 8)-% 
(which is the analogue for two dimensions of the (1 - M cos O)-s factor obtained 
in $4) characterizing a convected compact body, and that is simply a reflexion 
of the fact that edge scattering by large surfaces is, statically, a more efficient 
process than scattering by compact bodies. 

6. Conclusions 
We have shown that convective effects on the sound fields scattered or dif- 

fracted by solid surfaces take a variety of forms, determined both by the nature 
of the surface and by the location and type of primary source. The effects do not 
seem to be predictable from elementary arguments, and to some extent seem to 
run counter to  simple intuition. The most important results may be summarized 
as follows. 
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(i) For the near-field scattering by compact rigid bodies the convective 
amplification is not of dipole order, but rather quadrupole, with a pressure 
increase by (1  - M cos This can be viewed as arising from the fact that the 
boundary condition on the potential 6 leads to an expression for q5 of dipole 
form, so that 6 suffers dipole convective amplification by (1 - M cos 8)-2 and p 
by (l-Mcos8)-3. These are the only convective effects for the near-field 
scattering case. 

(ii) No universal convective effect applies to the scattering by a compact 
body of the field of a distant source. The 8 dependence cannot be expressed in 
terms purely of the Doppler factor 1 - M cos 8, and convective effects introduce 
O ( M )  monopoles whose fields do not vanish at  8 = 90". The dependence upon 
the position 0, is also obscure. 

(iii) For near-field scattering by rigid half-planes convective effects are repre- 
sented by non-multipole Doppler factors, the pressure being increased by 
(1 - M cos 8)-% in a three-dimensional problem, regardless of source type and 
location, and regardless of whether the edge is a leading or a trailing edge 
[though see (iv)]. 

(iv) The importance of the imposition of a Kutta condition on the unsteady 
flow a t  a trailing edge is confined to sources so close to the trailing edge that 
kr, < M .  

(v) In  the case of diffracted fields from distant sources, the location and type 
of primary source enter the convective effects. However, the 8 dependence of 
the convective terms continues to involve only the nature of the scatterer, for 
example in the (1 - M cos 8)-$ factor which the pressure acquires when diffracted 
by a half-plane. 

We should also note the emphasis placed upon the potential rather than 
pressure, as the fundamental field variable in these problems involving con- 
vection. 

The predicted increases in mean-square pressure are quite significant in 
practical terms. With M = 0.2 and 8 = 30°, a case of interest in an aircraft 
landing approach, for example, is increased by about 3 dB in either of cases 
(i) or (iii) above (which should be contrasted with an anticipated flight reduction 
in mixing noise of, typically, 3-5 dB). This then is the kind of increase to be 
anticipated from blown-flap noise, which may fall under case (i) or (iii) depending 
upon the frequency of the unsteady flow which interacts with the flap, from 
exhaust and wing trailing-edge interaction noise, which is likely to occur with 
over-wind shielded engines, and possibly from obstruction noise sources of the 
kind described by Gordon (1969). These powerful sources of excess noise are 
associated with unsteady flow around obstacles within a jet pipe, and the com- 
pact limit is generally applicable, so that 2 would be expected to increase by 
(1 - M cos 8)-6 provided that the obstruction lies within a wavelength of the 
jet-pipe nozzle, enabling it to be aware of the convection. That, however, is no 
more than a plausible argument, and is unlikely to hold for those sources of 
internal noise, of great practical importance, at  frequencies high enough that 
the sources are buried deep within the jet pipe. In  such cases one might expect 
no convective amplification, at any rate as far as the total sound power delivered 
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by the source is concerned, for the power is determined by the local environment 
of the source, and cannot be increased by remote effects such as convection of 
the jet pipe. However, this does not preclude the possibility of convective changes 
to the pressure, provided these ensure the constancy of the total radiated power. 
Problems to  model this kind of situation involve different mean flows inside and 
outside a jet pipe and the attendant downstream shear layer, with excitation 
from sources within the jet pipe, and are very much more difficult than those 
considered here, though much in need of solution in view of the practical impor- 
tance of noise sources within aeroengines. 

A topic related to conclusion (ii) above concerns the calibration of trans- 
ducers for the measurement of acoustic pressure fluctuations in 8 moving stream, 
a matter of some importan’ce in view of widespread current attempts to use 
wind tunnels for simulation of the noise of aircraft in flight. The possible bearing 
of the kind of calculations presented here on the calibration issue is really a 
separate topic, which will be reported elsewhere. 

This work was conducted under a contract from the Ministry of Defence 
(Procurement Executive), administered by the National Gas Turbine Establish- 
ment. The author is grateful to Professor J. E. Ffowcs Williams and Dr M. S. 
Howe for many stimulating and helpful discussions. 

Appendix. Plane-wave scattering in the presence of mean flow 

number k. Then as F+ 0 the incident field is 
We use P here to denote the previous ‘i; made dimensionless with the wave- 

qV = exp(-iFcos3+iMPcos8) 

- i - ireos B (cos e, - M )  - + F ~ C O S ~ B  (COB e, - ~ ) 2 + .  . . (A 1) 

in the axisymmetric case, sin 8, = 0. Define an inner variable P = F/c, 8 = Ica-t 0 ;  
then the scattered potential satisfies the equation 

vg5 = (-iE+1Ma~o.e)(-i€+Ma(D0.0)g5, 

where a), = - cos B(? + 1/2P) (1 + O(M2)) 

is the potential of the mean flow. Assume an inner expansion 

Note that although the boundary values for @O) and $(l) axe just multiples of 
those for the case M = 0, the governing equations do not have the same property, 
so that the solutions for M + 0 cannot be found by scaling those for M = 0. 

15 F L M  72 
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The inner solutions are 

p) = ( - i p 2 )  cosa (cos 0, - M I ,  (A 7) 

@') = M (COS 8, - M )  {(Zi)- '  ~ 0 ~ ~ 8  + (4P4)-' C O S ~  G} 
- ( 9 ~ 3 ) ) - 1  (3 cos2e  - 1)  ((cos 8, - M ) Z  + ptr (cos eo - M ) }  

- ( 3 P ) - l { ( c o s 8 , - M ) 2 - t ~ M  ( G O S e , - M ) )  (A 8 )  

plus, in each case, a general inner eigensolution. In each case it turns out that 
the eigensolutions are only needed at higher orders in B. 

The two-term inner solution E @ ' ) + E ~ C $ ( ~ )  is now written in terms of 5 and 
expanded to leading order in B for r = O(1). That order is O(e3), and prompts an 
outer expansion 

where 

with a general multipole solution 

{V - ( M  apx  + i ) 2 ]  p) = 0, (A 10) 

-exp ( i ( ~  + Mz)} - a 
$0) = A + B z  

?; 

- +... . (A 11) 
8 exp {i(p + M S ) }  

+D-( az r 

Now we express e3$(O) in terms of F, expand for r" = O( l), keeping terms O(s) and 
0(8), and then rewrite the result in terms of F .  Matching with the outer expansion 
of the inner two-term series gives 

(A 1 2 )  I B = ti (00s 0, - M ) ,  

B = - 4 (cos 8, - M ) Z  + g~ (cos e, - M ) ,  - -  
C = D = all higher coefficients = 0. 

These results lead directly to the quoted equation (4.10) of the main text. 
The important point to note is that although the dipole strengths B, and B 
can be found from matching e3$(0) to B$(O) the monopole strength 2 remains 
undetermined, and can only be found by a higher-order matching with 

€$" + B z p .  

The naive matching of the leading dipole #O) of the inner series with the inner 
asymptotics of the dipole elements in (A 11) omits a monopole just as important 
as the dipole. 
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